Proof of Simpson's Rule

Dr Timothy J. Walton

(July 24, 2021)

We consider the area under the curve $y=f(x)$ where f is a general parabola:

$$
\begin{aligned}
f: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto f(x)=a x^{2}+b x+c
\end{aligned}
$$

for some $a, b, c \in \mathbb{R}$ with $a \neq 0$. For simplicity, we consider the area under this curve on the interval $[-h, h]$ for some $h>0$:

The curve passes through the points $\left(-h, y_{0}\right),\left(0, y_{1}\right)$ and $\left(h, y_{2}\right)$ where

$$
\begin{aligned}
& y_{0}=a h^{2}-b h+c \\
& y_{1}=c \\
& y_{2}=a h^{2}+b h+c .
\end{aligned}
$$

Considering these as 3 equations in 3 unknowns a, b, c, we can solve to find

$$
\begin{align*}
a & =\frac{1}{2 h^{2}}\left(y_{0}-2 y_{1}+y_{2}\right) \\
b & =\frac{1}{2 h}\left(y_{2}-y_{0}\right) \tag{1}\\
c & =y_{1} .
\end{align*}
$$

The area under the curve A (shaded in the diagram above) is given by the definite integral:

$$
\begin{aligned}
A & =\int_{x=-h}^{h}\left(a x^{2}+b x+c\right) d x=\frac{1}{3} a x^{3}+\frac{1}{2} b x^{2}+\left.c x\right|_{x=-h} ^{h} \\
& =\frac{2}{3} a h^{3}+2 c h=\frac{h}{3}\left(2 a h^{2}+6 c\right)
\end{aligned}
$$

or after substituting the values of a, c from (1):

$$
A=\frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right) .
$$

Now consider the integral of a function F :

$$
\begin{equation*}
\int_{x=a}^{b} F(x) d x \tag{2}
\end{equation*}
$$

where F is assumed to be continuous on $[a, b]$. We divide this interval into n even subintervals of equal length:

$$
h=\frac{b-a}{n},
$$

and introduce the $n+1$ points (or ordinates):

$$
x_{0}=a, x_{1}=a+h, x_{2}=a+2 h, \ldots, x_{n-1}=x+(n-1) h, x_{n}=a+n h=b .
$$

We evaluate the function F at these points:

$$
y_{0}=F\left(x_{0}\right), y_{1}=F\left(x_{1}\right), y_{2}=F\left(x_{2}\right), \ldots, y_{n-1}=F\left(x_{n-1}\right), y_{n}=F\left(x_{n}\right) .
$$

Example of applying Simpson's rule to a function using 6 intervals. The dashed curves denote the quadratic interpolating polynomials between each three successive points.

Since a quadratic polynomial can be used to interpolate three distinct points, we can ap-
proximate (2) by adding the areas under the parabolic arcs through three successive points:

$$
\begin{aligned}
\int_{x=a}^{b} F(x) d x & \approx \frac{h}{3}\left(y_{0}+4 y_{1}+y_{2}\right)+\frac{h}{3}\left(y_{2}+4 y_{3}+y_{4}\right)+\cdots+\frac{h}{3}\left(y_{n-2}+4 y_{n-1}+y_{n}\right) \\
& =\frac{h}{3}\left(y_{0}+4 y_{1}+2 y_{2}+4 y_{3}+\cdots+4 y_{n-1}+y_{n}\right)
\end{aligned}
$$

This is known as Simpson's rule.

